Boron-induced hydrogen localization in the novel metal hydride LaNi(3)BH(x) (x = 2.5-3.0).
نویسندگان
چکیده
The crystal structure and hydrogenation properties of the intermetallic boride LaNi(3)B were investigated. The hydrogen-free compound has a novel structure with orthorhombic symmetry, space group Imma, a = 4.9698(8) A, b = 7.1337(8) A, c = 8.3001(9) A, and V = 294.26(7) A(3). Thermal gravimetrical analysis reveals a hydride phase that forms near ambient conditions within the compositional range LaNi(3)BH(2.5)(-)(3.0). Single-crystal X-ray diffraction on both the alloy and the hydride, using the same crystal, shows an expansion in the a-c plane (by up to approximately 8%) and a contraction along b (by approximately 3%), while the symmetry changes from Imma to Bmmb (Cmcm) and the unit cell doubles along a and b. The cell parameters for the composition of LaNi(3)BD(2.73(4)) are a = 10.7709(7) A, b = 16.0852(10) A, c = 7.6365(5) A, V = 1323.03(15) A(3), and space group Cmcm. Four nearly fully occupied interstitial hydrogen sites were located by neutron powder diffraction on deuterides and found to have tetrahedral, La(2)Ni(2) (D1,D2), trigonal-prismatic, La(3)Ni(3) (D3), and trigonal-bipyramidal, La(2)Ni(3) (D4), metal environments. The structure can also be described in terms of alternating quasi two-dimensional [NiD](-) slabs (Ni-D = 1.62-1.97 A) and La-B sheets for which bond-valence sums suggest the limiting formula La(3+)B(0)[Ni(3)D(3)](3)(-). The La-B planes do not accommodate deuterium; the B-D and D-D interactions appear to be repulsive. The shortest B-D and D-D contacts are 2.52(2) and 2.33(2) A, respectively.
منابع مشابه
Comparison of metal additives and Boron atom on MgH2 absorbing-desorbing characteristics using calculated NQCCs
Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni ...
متن کاملComparison of metal additives and Boron atom on MgH2 absorbing-desorbing characteristics using calculated NQCCs
Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni ...
متن کاملNa[Li(NH2BH3)2]--the first mixed-cation amidoborane with unusual crystal structure.
We describe the successful synthesis of the first mixed-cation (pseudoternary) amidoborane, Na[Li(NH(2)BH(3))(2)], with theoretical hydrogen capacity of 11.1 wt%. Na[Li(NH(2)BH(3))(2)] crystallizes triclinic (P1) with a = 5.0197(4) Å, b = 7.1203(7) Å, c = 8.9198(9) Å, α = 103.003(6)°, β = 102.200(5)°, γ = 103.575(5)°, and V = 289.98(5) Å(3) (Z = 2), as additionally confirmed by Density Function...
متن کاملPERFORMANCE OF AB, ALLOYS FOR HYDROGEN STORAGE AND HYDRIDE ELECTRODES
Two types of hydride electxodes are potential candidates to replace the Cd elecsode in NilCd batteries, One is of the A type where A is a rare earth metal or mixture thereof, and B is the transition metal. The other is commonly referred to as A type. A , type alloys with partial substitution of the B element in A type hydride material (Ovonic) with Co, Mn, Al, and Fe were studied (A compo...
متن کاملIn Situ X-Ray Absorption Spectroscopy Studies of Metal Hydride Electrodes
In situ x-ray absorption spectroscopy (XAS) studies were done on three metal hydride electrodes, LaNi~, LaNi~.sSns.2, La0.sCe02Ni48Sn0.2, in 6M KOH. Ex situ measurements were also made on dry uncycled electrodes and on material from an La0.sCe0.2Ni48Sn0.2 electrode that had been cycled 25 times. Comparison of the in situ XAS at the Ni K and at the La L3 edge of charged and discharged electrodes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 44 12 شماره
صفحات -
تاریخ انتشار 2005